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   In Schrodinger’s visual model of the electron first put forward in 1926, and again 

described in his 1933 Nobel Prize address, the electron was conceived of as a 

“diffraction halo” around the nucleus. In this model, the EM waves become 

trapped into a spherical path by diffraction and the wavefronts oscillate between 

the two polar ends of this sphere, forming an EM shell. This model was addressed 

in detail in our previous paper. 
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 and can be summarized in the diagram shown 

below.  

 

   I would like to describe herein how this model of the electron, or particles in 

general, should contract in their direction of motion consistent with a physical 

interpretation of the Lorentz contraction. We would also expect a dilation of 

oscillation period of spherical standing wave. This assumes the electron is moving 

with respect to the frame of reference in which the EM energy waves, i.e. a 

preferred frame for the speed of light as called for In Lorentz’s theory or 

corresponding states.
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   In Schrodinger’s 1933 model, the electron comprises a spherical standing wave, 

where the waves travel in the forward and reverse directions between the poles 

of the sphere. The wavelength of these waves is on the order of the 

circumference of the sphere, and an integer or half-integer number of waves 

must fit the circumference for the electron to be stable. We assume that the 

standing waves are moving at the speed of light C in some medium in which the 

structure is at rest, which is our preferred frame for the speed of light of these 

waves, and would have an average wavelength λ=C/f.  If the electron then moves 

at some velocity v from left to right, we would expect that from the perspective of 

an observer moving with the electron, the propagation time  t’ of the component 

of the spherical wave moving in the forward direction over a distance L will 

become longer with respect to its stationary state by the amount: 

 

and the wavelength is then shorter by : 

 

Conversely, the component of the wave moving in the reverse direction will have 

its propagation time shortened by:   

 

and the wavelength is then longer by: 

 

Thereby the average wavelength λ’’’ of the standing wave across this segment is 

the average of the two wavelengths above:  

 



So the average wavelength remains unchanged in the forward/reverse direction. 

However, for the condition where the EM rays are propagating perpendicular to 

the velocity v, the propagation time in both directions will be: 

 

so the average speed of light will be:     C’ = C/ γ            (7) 

And the average wavelength on the perpendicular segment will be shorter: 

λλλλ’’’ =    λλλλ / γ / γ / γ / γ                 (8) 

For any intermediate segments between the parallel and perpendicular segments, 

the average two-way wavelength will be shorter, somewhere between λ and λ/γ. 

 

To calculate these intermediate values in an angle-dependent way, we first 

calculate the one-way wavelength on the segment using the equation below: 
4
 

 



And then use the forward and reverse wavelength at angle θ and angle θ +180 

degrees to calculate the average wavelength λ’’’ for the segment.  

To determine how the sphere would change shape with velocity, we then plot a 

2D section of the sphere in Excel as a concatenation of 100 segments covering 3.6 

degrees each, and then adjusted these segment lengths as a function of 

increasing velocity. For the sake of illustration, this circle is 100 integer 

wavelengths in circumference, each segment being one wavelength.  

Each segment is considered to be the average 2-way wavelength in length, since 

the object we are describing is a spherical standing wave. As the velocity of the 

shell increases, the local speed of light decreases unevenly around the shell, 

leading to a shortening of the average two-way wavelengths as one approaches 

the x-axis. Conversely, the average two-way wavelengths close to the y-axis do 

not contract since they average to a net zero change in length with velocity. This 

can be seen in the figure below at various speeds approaching the speed of light:  

 

The circumference of the sphere is found to get smaller and smaller with velocity, 

proportional to SQRT(1-v^2/2c^2), while preserving the total number of 

concatenated segments at 100. The height of the sphere perpendicular to travel 

doesn’t change, but the length of the sphere in the direction of motion along the 

x-axis shortens by SQRT(1-v^2/c^2),  i.e. 1/γ,  which is the amount anticipated by 

the Lorentz contraction. The contraction occurs for a different reason than one 



might expect – the sections at the front and back of the object close to the x-axis 

are the ones contracting, and this shortening pulls the ends closer together. This 

gives us a picture of the proportional change in the shape of the shell with 

velocity. 

The sum of the one-way wavelengths of the EM around 360 degrees of 

circumference also adds up to a net shortening of SQRT(1-v^2/2c^2), which would 

be what would be expected if the height remained constant but the width shrinks 

by the amount of the expected Lorentz contraction.  

Explanation of Time Dilation in a Moving Particle: 

   If we examine the one-way propagation time of an EM wave across each 

segment when the shell is moving at velocity V, we find that the propagation time 

around 360 degrees is now increased. If we take the sum of the one-way 

propagation time across each contracted segment, based on the calculated speed 

of light at the given angle for that segment, we find that the beam completes our 

100m example circuit in:  

3.3333333E-07 seconds,  v = 0 m/s          3.3333358E-07 seconds,  v = 365 km/s 

And we find that:      3.3333333E-07 x γ = 3.3333358E-07 

   So the propagation time has increased by γ, and this is after accounting for the 

circumference shrinking by SQRT(1-v^2/2c^2). If we consider the natural period of 

the electron to be the oscillation period of the standing wave back and forth 

across the shell, then this oscillation period t will naturally increase with velocity 

by the Lorentz factor γ. This result has been confirmed experimentally, for 

example in the Ives-Stillwell experiment of 1938.
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 Ives used the transverse 

Doppler effect to confirm that hydrogen canal rays had their spectral line 

emissions decrease in frequency with velocity. This follows the relation:  

f’= f*SQRT(1-v^2/C^2).  

In Ives’s paper, he explains this effect based on the theory of Lorentz – it is not 

“time” that dilates, but rather, the mechanical oscillation period of the particle.  



So in that sense “time dilation” could be considered a misnomer. This result also 

suggests that there is no need for the electron to loose energy with velocity – the 

lengthening of the period of these “atomic clocks” is a consequence of the 

increased time required for the spherical waves to travel around the 

circumference. The alternative would violate conservation of energy.  

This model can all be summarized in the diagram below:  
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               Appendix – Speed of light calculation in the dielectric light path:  

   Calculation of the angle-dependent one-way speed of light on a light path, such 

as the arm of an interferometer, moving with respect to a preferred frame, has 

previously been discussed in the work of Lorentz. In 1921 he offered the following 

equation to express this: 
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Where w = the speed of light in the arm, u = refraction index, v the velocity with 

respect to the frame, and c the speed of light in the preferred frame. This 

equation is somewhat accurate, with small errors in the 0.5 m/s range, but 

encounters larger errors when n > 1. It also doesn’t include the Lorentz 

contraction which must be added later to the calculated length of the arm.  

To try to overcome these deficiencies, we derived a new equation as follows. If 

we start from Fresnel drag equation used by Lorentz in similar calculations, we 

find it can be re-expressed as:  

 

C’ = velocity of light in the arm, v = velocity of the arm with respect to the 

preferred frame, and n = refractive index of the arm, angle to the wind is 0.  

If we now add the Lorentz contraction to the denominator, it cancels out with the 

equivalent amount in the numerator, leading to the simplified version for the 

speed of light in a Lorentz contracted arm at angle 0 to the wind.  

 

We then correct for the angle to the wind by adjusting the denominator v by the 

factor cos(θ):  



 

This new equation (4) has been tested in a large number of interferometer 

simulations and it predicts exactly zero fringe shifts for the motion of 

interferometers with respect to space as is called for by Lorentz’s theory. This 

includes for interferometer experiments with RI >=< 1.  

The equation used in this paper then corrects equation 4 back to the Lorentz 

contraction (LC) free version, since the LC is what we are trying to determine in 

Schrodinger’s moving spherical waves. To get the correct values from 0-360 

degrees, an expression shown in red is added to cancel out the angle- dependent 

LC  that was effectively built-in to equation 4.  

 

From this the wavelength of the concatenated sections of our moving spherical 

waves can be calculated using C = fλ. 

 


