L1 Length (m) angle d L1 arm (deg.) Path L1 Lorentz contraction ( aLC ) 1st velocity in sidereal direction  (m/s) Vert. angle = 0    
         
a= SQRT(1-v^2/(c^2))                
L2 Length (m) angle d L2 arm (deg.) Refractive index (n) of arms                
Path L2 Lorentz contraction ( aLC ) X L1 Arm L2 Arm Source Detector  
Stationary light speed C (m/s) Avg Time Dilation factor in v frame ( at ) a=SQRT(1-v^2/(c^2)) l in vacuum (m)      
     
Optical Path L1:  C': 1/(n/c+v/c^2 * cosd +v^2n/2c^3(1+cos^2d)) Total Newtonian Time t  Local time Dilated            
t'F (sec) t'R (sec) t' sum (sec) t' sum (sec) * at        
       
           
C'F (m/s) C'R (m/s) C' average (m/s) C' average (m/s) / at        
 Optical Path L2:  C': 1/(n/c+v/c^2 * cosd +v^2n/2c^3(1+cos^2d)) Total Newtonian Time t  Local time Dilated          
t'F (sec) t'R (sec) t' sum (sec) t' sum (sec) * at      
       
       
C'F (m/s) C'R (m/s) C' average (m/s) C' average (m/s) / at          
L1 Length (m) angle d L1 arm (deg.) Path L1 Lorentz contraction ( aLC ) 2nd: Vertical angle q from line of motion (0-90 deg.)          
0 a=SQRT(1-v^2/(c^2))            
L2 Length (m) angle d L2 arm (deg.) final angle f vert. + Horizontal Path1           
Path L2 Lorentz contraction ( aLC )     Lorentz Contraction? 1 = YES, 0 = No      
2nd: New sidereal v (m/s) Avg Time Dilation factor in v frame ( at ) a=SQRT(1-v^2/(c^2)) final angle f  vert. + Horizontal Path2              
  Time Dilation? 1 = YES,  0= No  
Optical Path L1:  C': 1/(n/c+v/c^2 * cosd +v^2n/2c^3(1+cos^2d)) Total Newtonian Time t  Local time Dilated    
t'F (sec) t'R (sec) t' sum (sec) t' sum (sec) * at   L1 Length (m) L2 Length (m)  
   
     
             
C'F (m/s) C'R (m/s) C' average (m/s) C' average (m/s) / at      L1 Path Angle (deg.) L2 Path Angle (deg.)      
 Optical Path L2:  C': 1/(n/c+v/c^2 * cosd +v^2n/2c^3(1+cos^2d)) Total Newtonian Time t  Local time Dilated    
     
t'F (sec) t'R (sec) t' sum (sec) t' sum (sec) * at    
  Arrival Time diff. 1st vs 2nd Fringe Shift at Det. 1st vs 2nd  
         
C'F (m/s) C'R (m/s) C' average (m/s) C' average (m/s) / at          
In the Kennedy-Thorndike experiment, they used a Michelson interferometer with different arm lengths and measured the fringe shift of the returning beams at the detector as the earth rotated the device to various orientations with respect to sidereal space.         
They theorized that an aether wind should be detectable under these circumstances if it exists. However, the correct calculation using Lorentz's 1904 Generalized theorem of corresponding states as shown above results in a null result even if the aether exists.         
Thus the Kennedy-Thorndike experiment was incapable of distinguishing between the the predictions of Special Relativity or Lorentz ether theory, since both theories predict a null result. The arm lengths, angle of orientation of the arms, velocities in two        
 different orientations, refractive index and wavelength of light are all adjustable in this simulation. The speed of light predicted always remains 3E8 m/s.